NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET An explicit link between Gaussian fields and Gaussian Markov random fields: The SPDE approach
نویسندگان
چکیده
Continuously indexed Gaussian fields (GFs) is the most important ingredient in spatial statistical modelling and geo-statistics. The specification through the covariance function gives an intuitive interpretation of its properties. On the computational side, GFs are hampered with the big-n problem, since the cost of factorising dense matrices is cubic in the dimension. Although the computational power today is alltime-high, this fact seems still to be a computational bottleneck in applications. Along with GFs, there is the class of Gaussian Markov random fields (GMRFs) which are discretely indexed. The Markov property makes the involved precision matrix sparse which enables the use of numerical algorithms for sparse matrices, that for fields in R only use the square-root of the time required by general algorithms. The specification of a GMRF is through its full conditional distributions but its marginal properties are not transparent in such a parametrisation. In this paper, we show that using an approximate stochastic weak solution to (linear) stochastic partial differential equations (SPDEs), we can, for some GFs in the Matérn class, provide an explicit link, for any triangulation of R, between GFs and GMRFs. The consequence is that we can take the best from the two worlds and do the modelling using GFs but do the computations using GMRFs. Perhaps more importantly, our approach generalises to other covariance functions generated by SPDEs, including oscillating and nonstationary GFs, as well as GFs on manifolds. We illustrate our approach by analysing global temperature data with a non-stationary model defined on a sphere. ACKNOWLEDGEMENT: The authors are listed in alphabetical order.
منابع مشابه
Norges Teknisk-naturvitenskapelige Universitet Fitting Gaussian Markov Random Fields to Gaussian Fields Fitting Gaussian Markov Random Fields to Gaussian Fields Tmr Project on Spatial Statistics (erb-fmrx-ct960095) for Support and Inspiration
SUMMARY This paper discusses the following task often encountered building Bayesian spatial models: construct a homogeneous Gaussian Markov random field (GMRF) on a lattice with correlation properties either as present in observed data or consistent with prior knowledge. The Markov property is essential in design of computational efficient Markov chain Monte Carlo algorithms used to analyse suc...
متن کاملNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Multivariate Gaussian Random Fields Using Systems of Stochastic Partial Differential Equations
In this paper a new approach for constructing multivariate Gaussian random fields (GRFs) using systems of stochastic partial differential equations (SPDEs) has been introduced and applied to simulated data and real data. By solving a system of SPDEs, we can construct multivariate GRFs. On the theoretical side, the notorious requirement of non-negative definiteness for the covariance matrix of t...
متن کاملNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Modelling spatial variation in disease risk using Gaussian Markov random field proxies for Gaussian random fields
Analyses of spatial variation in disease risk based on area-level summaries of disease counts are most often based on the assumption that the relative risk is uniform across each region. Such approaches introduce an artificial piecewise-constant relative risk-surface with discontinuities at regional boundaries. A more natural approach is to assume that the spatial variation in risk can be repre...
متن کاملTEKNISK - NATURVITENSKAPELIGE UNIVERSITET Marginal Variances for Gaussian Markov Random Fields
Gaussian Markov random fields (GMRFs) are specified conditionally by its precision matrix meaning that its inverse, the covariance matrix, is not explicitly known. Computing the often dense covariance matrix directly using matrix inversion is often unfeasible due to time and memory requirement. In this note, we discuss a simple and fast algorithm to compute the marginal variances for a GMRF. We...
متن کاملNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Specifying Gaussian Markov Random Fields with Incomplete Orthogonal Factorization using Givens Rotations
In this paper an approach for finding a sparse incomplete Cholesky factor through an incomplete orthogonal factorization with Givens rotations is discussed and applied to Gaussian Markov random fields (GMRFs). The incomplete Cholesky factor obtained from the incomplete orthogonal factorization is usually sparser than the commonly used Cholesky factor obtained through the standard Cholesky facto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010